Cara Kerja Bintang 2: Sumber Energi Bintang

Pada bagian pertama, kita sudah mengetahui kenapa bintang tetap stabil selama milyaran tahun, yaitu karena adanya kesetimbangan antara gaya gravitasi dengan tekanan termal atau tekanan radiasi.


Hermann von Helmholtz (1821 – 1894)


William Thomson yang lebih dikenal sebagai Lord Kelvin (1824 – 1907)

Kita bisa melihat juga dari mana munculnya gaya gravitasi, namun paparan pada bagian pertama malah menimbulkan pertanyaan baru: dari mana asalnya tekanan radiasi? Tentu saja tekanan radiasi dihasilkan oleh pembangkitan energi dalam bintang. Bintang menghasilkan energi yang kemudian menghasilkan tekanan radiasi sehingga menyeimbangkan bintang. Namun lagi-lagi, dari mana energi bintang? Inilah misteri kuno yang membutuhkan waktu lama untuk dijawab.

Energi dari pengerutan Matahari?

Pada abad 19, dua orang fisikawan besar, Lord Kelvin dari Inggris dan Hermann von Helmholtz dari Jerman secara terpisah mencoba menjawab persoalan ini: Bagaimana jika energi matahari berasal dari pengerutannya? Anggaplah pada masa lalu ukuran matahari jauh lebih besar daripada ukurannya yang sekarang. Lalu perlahan-lahan, matahari mengerut karena tarikan gravitasi dari massanya. Pengerutan ini akan membebaskan energi potensial yang dapat diubah menjadi energi panas atau energi termal. Berapa energi potensial yang dibebaskan Matahari? Seandainya matahari di masa lalu memiliki jari-jari yang jauh besar daripada jari-jarinya yang sekarang, maka pengerutan Matahari telah membebaskan energi potensial sebesar 4 x 10^48 erg. Menurut teorema virial, bila sebuah sistem gravitasi (seperti Matahari) mengubah kesetimbangannya, maka setengah dari energi potensialnya akan diubah menjadi energi termal, sementara setengah lagi akan dipancarkan. Dengan demikian, energi yang dipancarkan matahari adalah 2 x 10^48 erg. Energi ini sangat besar, namun inikah sumber energi matahari?


Kurva sebaran intensitas energi sebuah benda hitam

Untuk menjawab pertanyaan ini, kita perlu mengetahui berapa energi yang dipancarkan matahari setiap detiknya. Ini dapat dihitung apabila kita, sekali lagi, mengandaikan matahari sebagai sebuah benda hitam sempurna yang berpijar. Dengan pengandaian ini, maka kurva sebaran energi sebuah benda hitam dapat kita gunakan untuk menghitung keluaran energi benda hitam tersebut di seluruh panjang gelombang, lalu menjumlahkan seluruh energi pada panjang gelombang yang berbeda-beda tersebut. Dari prosedur ini, kita akan memperoleh sebuah hukum yang bernama Hukum Stefan-Boltzmann, yang menyatakan bahwa total energi setiap detik yang dipancarkan dari setiap satuan area permukaan sebuah benda hitam ternyata hanya tergantung pada suhunya. Karena kita tahu berapa luas permukaan Matahari (anggap Matahari berbentuk bola dengan jari-jari 700.000 km) dan juga suhu permukaannya yaitu 5800 K, maka dapat dihitung total energi yang memancar dari seluruh permukaan Matahari pada saat ini adalah 3.8 x 10^33 erg setiap detiknya! Ini sama dengan 3.8 x 10^26 Watt. Bayangkan berapa jumlah rumah yang dapat diterangi oleh energi Matahari apabila setiap rumah membutuhkan daya 1000 Watt. Tentu saja energi ini memancar ke segala arah dan hanya 1400 Watt per meter persegi yang sampai ke Bumi.

Sekarang kita sudah tahu bahwa Matahari memancarkan energi 3.8 x 10^33 erg setiap detiknya, dan bahwa total energi yang dihasilkan dari pengerutan gravitasi adalah 2 x 10^48 erg. Andaikan selama ini matahari memancarkan energinya secara konstan dan tidak berubah, maka pengerutan gravitasi ini telah berlangsung selama kira-kira 17 juta tahun. Dari tanda-tanda kehidupan di Bumi, kita telah menyadari kehidupan telah berlangsung selama 3 milyar tahun, sementara pengerutan Kelvin-Helmholtz hanya sanggup menghasilkan energi yang sebanding dalam skala puluhan juta tahun. Jadi, harus ada sumber energi lain yang dapat menghasilkan energi dalam skala 10^33 erg selama milyaran tahun.


Penelitian Pierre dan Marie Curie menunjukkan fenomena 
radioaktivitas yang membebaskan energi dalam jumlah besar

Radioaktivitas

Alternatif lain untuk menjawab problem ini adalah melalui fenomena radioaktif. Pada tahun 1896, Henri Becquerel menemukan fenomena radioaktivitas. Atom berat seperti Uranium memiliki sifat radioaktif, dan atom ini memancarkan energi berjumlah besar dalam bentuk radiasi. Mengapa bisa demikian? Tidak ada yang mengerti. Suami-istri Pierre dan Marie Curie-lah yang mencoba menjawab pertanyaan ini dan membayarnya dengan nyawa mereka. Interaksi keduanya dengan bahan-bahan radioaktif begitu dekat, dan pada waktu itu, bahaya radiasi nuklir belum disadari. Catatan-catatan riset mereka menjadi begitu bersifat radioaktif setelah bertahun-tahun terekspos radiasi Radium, sehingga sampai saat ini, catatan-catatan itu harus disimpan dalam kotak berlapis timah. Marie Curie meninggal akibat leukemia, setelah bertahun-tahun meneliti fenomena radioaktivitas dan bersentuhan dengan radiasi. Bagaimanapun, pengorbanan Pierre dan Marie yang bereksperimen di dalam laboratorium sempit mereka di Paris menunjukkan adanya sumber energi yang luar biasa besar di dalam atom.

Bagaimana sumber energi ini dapat dihasilkan? Tidak ada yang memahami apa yang sebenarnya terjadi di dalam atom. Pada akhir abad 19, para fisikawan membayangkan atom hanya seperti bola sederhana yang bermuatan positif dan di dalamnya elektron yang bermuatan negatif tersebar secara merata dan menetralisir muatan positif proton. Model seperti ini misalnya adalah model kue kismis J.J. Thomson. Namun struktur ini tidak mampu menjelaskan fenomena radioaktivitas. Percobaan-percobaan selanjutnya yang dilakukan Ernest Rutherford serta Hans Geiger dan Ernest Marsden menunjukkan bahwa seluruh proton dalam atom terkonsentrasi dalam nukleus/inti bermuatan positif, dan nukleus ini dikelilingi oleh elektron. Yang paling mengejutkan dari eksperimen Rutherford adalah bahwa diameter nukleus ini 100 000 kali lebih kecil daripada diameter atom. Bila kita bayangkan sebuah inti atom berukuran bola ping pong, maka elektronnya akan mengorbit inti atom tersebut sekitar 500 meter dari bola ping pong tersebut! Ini sangat luar biasa. Segala hal yang dapat kita raba, pegang, dan rasakan, ternyata tersusun atas … ruang kosong!


Rutherford bereksperimen dengan partikel alpha untuk meraba-raba struktur atom

Inti atom yang terdiri atas Proton dan Neutron dikelilingi oleh Elektron dalam jumlah yang sama. Meskipun tidak terlalu akurat, namun model ini dapat menjelaskan fenomena radioaktivitas.

Elektron terikat oleh inti atom karena adanya gaya listrik tarik-menarik antara muatan negatif yang terkandung dalam elektron dengan inti yang bermuatan positif. Rutherford menunjukkan bahwa inti atom terdiri atas proton yang bermuatan positif, serta setiap atom memiliki jumlah proton dan elektron yang sama. Dengan demikian, jumlah muatan totalnya adalah nol dan dapat kita katakan bahwa atomnya bersifat netral. Di kemudian hari, murid Rutherford, James Chadwick, menemukan bahwa di dalam inti atom juga terdapat neutron yang tidak bermuatan.

Dengan adanya pemahaman tentang struktur atom ini, fisikawan mulai dapat memahami fenomena radioaktivitas yang ditemukan Becquerel, Pierre Curie, dan Marie Curie. Sebuah unsur bisa berubah menjadi unsur lain karena adanya perubahan jumlah proton dan elektron di dalam atomnya. Dalam setiap atom terkandung jumlah proton dan elektron yang spesifik hanya dimiliki oleh atom tersebut, dan bila proton dan elektron dipertukarkan, maka sebuah inti atom dapat berubah menjadi inti atom lain.


Peluruhan Radium menjadi Radon adalah fenomena radioaktivitas yang diamati Pierre dan Marie Curie. Radium meluruh menjadi Radon sambil memancarkan radiasi dalam bentuk partikel Alfa.

Salah satu contoh adalah Radium yang dipelajari oleh Pierre dan Marie Curie. Radium memiliki 88 buah proton dan 138 neutron. Jumlah ini cukup besar dan cenderung tidak stabil serta dapat berubah menjadi unsur lain. Dalam hal Radium, 2 buah proton dan 2 buah neutron dapat dilepaskan sehingga ia berubah menjadi Radon yang memiliki 86 proton dan 136 neutron. Gabungan 2 proton dan 2 neutron ini disebut dengan partikel Alfa. Inilah radiasi yang perlahan-lahan membunuh Marie Curie. Reaksi pemecahan sebuah unsur besar menjadi unsur kecil ini disebut reaksi fisi dan merupakan mekanisme kerja di balik bom atom ataupun reaktor nuklir. Atom-atom berat seperti Radium relatif tak stabil dan akan melepaskan partikel alfa dengan sendirinya melalui fenomena yang disebut dengan peluruhan.

Mungkinkah reaksi sebaliknya , yaitu penggabungan 2 atom yang kecil, bisa menghasilkan energi? Hidrogen hanya memiliki 1 proton dan merupakan atom yang paling sederhana dari segi susunan proton dan elektronnya. Secara teoretis, penggabungan 2 atom Hidrogen menjadi Helium yang memiliki 2 proton adalah mungkin. Ini disebut dengan reaksi fusi. Melalui pengamatan spektroskopi, kita mengetahui bahwa Hidrogen dan Helium adalah dua unsur paling berlimpah di dalam bintang. Jadi, mungkinkah Matahari menghasilkan energinya melalui reaksi fusi?

Hidrogen adalah atom yang relatif stabil, oleh karena itu—tidak seperti atom berat yang meluruh—reaksi fusi tidak terjadi dengan sendirinya. Harus ada sebuah kondisi yang teramat ekstrem. Dalam kondisi tersebut, Hidrogen dapat melebur menjadi Helium. Kondisi ekstrem ini membutuhkan suhu dan tekanan yang teramat tinggi. Pada bagian pertama kita sudah mengetahui bahwa ada tekanan gravitasi yang besarnya semakin tinggi apabila kita semakin mendekati pusat bintang. Mungkinkah di pusat bintang, tekanan gravitasi dan suhunya luar biasa besar sehingga reaksi fusi dapat terjadi?

Pada bagian pertama kita sudah mengandaikan Matahari berada dalam kesetimbangan antara tekanan gravitasi dengan tekanan radiasi, sebuah kesetimbangan yang kita sebut dengan kesetimbangan hidrostatik. Berbekal asumsi ini, kita dapat menghitung tekanan gravitasi yang terjadi di pusat matahari, yaitu 3.4 × 10^{11} atm atau kira-kira 340 milyar kali tekanan atmosfer kita! Bila kita andaikan bahwa gas di pusat matahari adalah gas ideal, maka hukum gas ideal memungkinkan kita menghitung suhu di “tungku” matahari apabila kita mengetahui berapa besar tekanan di pusat matahari. Suhu di “tungku” matahari dengan demikian kira-kira adalah 15 juta Kelvin!


Reaksi fusi yang sederhana terjadi dengan menggabungkan 4 atom Hidrogen menjadi 1 atom Helium

Suhu dan tekanan ini amat tinggi dan memungkinkan terjadinya reaksi fusi. Berapa energi yang dibebaskan oleh reaksi ini? Dari eksperimen, diketahui bahwa massa 1 atom Helium sedikit lebih ringan daripada massa 4 atom Hidrogen. Ada massa yang hilang sebanyak 0.7% massa 4 atom Hidrogen, artinya setiap 1 kg Hidrogen akan berubah menjadi 0.993 kg Helium, dan sisa massa yang hilang sebanyak 0.007 kg ini akan diubah menjadi energi. Berapa jumlah energi yang dibebaskan oleh 0.007 kg massa ini? Ketika Enstein meneliti efek-efek relativitas khusus, dia menemukan bahwa energi (E) dan massa (m) ternyata ekivalen dan dapat saling berubah melalui persamaan yang amat terkenal itu, E = mc^2, dengan c adalah kecepatan cahaya. Kecepatan cahaya adalah 300 000 km per detik (3 x 10^{8} meter per detik), sebuah kecepatan yang amat tinggi. Dengan demikian sejumlah kecil massa dapat diubah menjadi energi yang jumlahnya sangat besar, karena faktor konversi c^2 yang sangat besar. Melalui rumus Enstein yang amat terkenal ini, kita dapat menghitung bahwa reaksi 1 kg Hidrogen menjadi 0.993 kg Helium akan membebaskan massa sebesar 0.007 kg yang ekivalen dengan energi sebesar 0.007 x (3 x 10^8)^2 = 6.3 x 10^{14} Joule energi. Ini sebanding dengan energi yang dihasilkan oleh pembakaran 100 000 ton batubara!

Cukupkah energi sebesar ini untuk menghidupi Matahari? Kita mengetahui bahwa jumlah Hidrogen dalam Matahari kurang lebih adalah 75% dari total massa Matahari. Kita dapat menghitung, berapa jumlah energi yang akan dibebaskan andaikan 10% dari Hidrogen ini dilebur menjadi Helium:

Energi = 0.007 x 0.75 x 0.1 x (2 x 10^{30}) kg x (3 x 10^{8} m/s)^2 = 9.4 x 10^{43} Joule = 9.4 x 10^{50} Erg.

Sebuah energi yang luar biasa besar, hampir seribu kali lipat energi yang dibebaskan oleh pengerutan gravitasi! Berapa lamakah reaksi nuklir ini dapat menghidupi Matahari? Sebagaimana kita ketahui, energi yang dipancarkan Matahari adalah 3.8 x 10^26 Joule setiap detiknya. Ini artinya Matahari dapat bersinar sepanjang 7.5 Milyar tahun!

Angka ini cukup konsisten dengan apa yang kita ketahui. Diduga, Matahari dan tata surya kita terbentuk antara 4 hingga 5 milyar tahun lalu. Perhitungan modern yang lebih teliti menyimpulkan bahwa daerah di dalam Matahari yang cukup panas untuk dapat menghasilkan reaksi nuklir hanyalah daerah yang mencakup 10% dari total Hidrogen dalam Matahari, sebagaimana perhitungan kita di atas. Lebih lanjut, lama waktu pembakaran Hidrogen menjadi Helium ini adalah kira-kira 10 milyar tahun. Jadi, Matahari yang saat ini usianya 5 milyar tahun berada dalam usia paruh baya dan masih akan bersinar hingga 5 milyar tahun lagi.

Dengan demikian, pada bagian ini kita telah menyimpulkan bahwa Matahari menghasilkan energinya dari reaksi fusi. Reaksi fusi adalah reaksi yang menggabungkan atom kecil menjadi atom besar, dalam hal ini adalah peleburan 4 atom Hidrogen menjadi 1 atom Helium. Perhitungan kita atas tekanan dan suhu di bagian inti Matahari juga menyimpulkan bahwa tekanan dan suhu di bagian inti cukup panas dan padat untuk dapat memicu reaksi fusi.

Namun demikian, seperti apakah persisnya reaksi ini? Kondisi ekstrem yang dapat menghasilkan reaksi fusi sangat sulit diciptakan di Bumi. Membuat simulasi inti matahari dengan tekanan ratusan milyar kali tekanan atmosfer Bumi dan suhu 15 juta Kelvin amatlah sulit. Satu-satunya cara untuk meraba detail-detail reaksi nuklir di dalam “tungku” Matahari adalah dengan cara perhitungan teoretis, kemudian membandingkannya dengan apa yang kita amati pada permukaan Matahari. Ini adalah sebuah pekerjaan yang sulit, dan akan diceritakan pada bagian berikutnya.

Cara Kerja Bintang 1 : Gravitasi dan Tekanan Gas

Tiga orang astronom, Carl Hansen, Steven Kawaler, dan Virginia Trimble, dalam buku teks terbaru mereka tentang struktur bintang, berjudul Stellar Interiors: Physical Principles, Structure, and Evolution (Interior Bintang: Prinsip Fisis, Struktur, dan Evolusi), menulis, “Jika Anda ingin tahu bagaimana bintang bekerja, pergilah keluar dan lihatlah mereka selama beberapa malam. Apa yang mereka lakukan hanyalah bersinar dengan stabil sepanjang waktu.” Secara historis ini betul. Mari kita lihat Matahari sebagai contoh.


Matahari masih satu-satunya bintang yang dapat kita pelajari dengan detail

Penemuan-penemuan fosil menunjukkan bahwa kehidupan di Bumi sudah ada paling tidak semenjak 3 milyar tahun lalu. Studi tentang kandungan kimiawi pohon-pohon tertua dan fosil-fosil tersebut juga menunjukkan bahwa Bumi tidak mengalami perubahan besar yang disebabkan oleh ketidakstabilan matahari. Apa yang dilakukan matahari kita “hanyalah” bersinar begitu lama!

Sinar matahari yang kita nikmati sekarang sama dengan sinar matahari yang dinikmati nenek moyang kita di zaman dahulu, bahkan sama pula dengan yang dinikmati dinosaurus puluhan juta tahun lalu. Dalam rentang waktu jutaan tahun, matahari relatif stabil. Tentu timbul pertanyaan: kenapa matahari bisa begitu stabil? Pertama-tama, mari kita coba hitung massa matahari. Kita sekarang tahu bahwa jarak Bumi kita ke Matahari adalah 150 juta km, sementara waktu yang dibutuhkan Bumi untuk mengelilingi Matahari adalah 1 tahun yaitu 365.25 hari. Anggap saja Bumi mengelilingi matahari dalam orbit berbentuk lingkaran, sehingga kecepatan Bumi mengelilingi matahari adalah 100 000 km/jam.


Matahari dan objek-objek yang mengitarinya menaati Hukum Gravitasi

Karena kita tahu bahwa gerakan Bumi berasal dari tarikan gravitasi Matahari, maka dapat kita simpulkan dari Hukum Gravitasi bahwa gaya gravitasi Matahari dihasilkan oleh massa sebesar 2 x 10^30 kg! Ini kira-kira sama dengan 330 000 kali massa Bumi.

Kenapa massa yang begitu besar ini tidak runtuh ke pusatnya? Sebuah gedung tinggi punya massa besar dan tetap berdiri karena ada pilar-pilar kerangka yang menopang seluruh massa gedung. Namun bila pilar-pilar ini diledakkan oleh pakar peruntuh gedung, seluruh bangunan akan runtuh secara bersamaan ke bawah, ke arah pusat Bumi. Demikian pula dengan matahari, bila tidak ada “sesuatu” yang menopang seluruh massa tersebut, maka matahari akan runtuh ke arah pusatnya dalam waktu kurang dari setengah jam! Karena kita tidak pernah melihat hal itu terjadi, berarti ada sesuatu yang menopang struktur matahari (Lihat video peruntuhan sebuah gedung tua. Inilah yang terjadi bila matahari kehilangan struktur penopangnya).

Kita anggap saja bahwa Matahari adalah sebuah bola gas yang berpijar. Bila hal itu betul, kita dapat anggap gas di dalam matahari sebagai sebuah gas ideal yang memancarkan radiasi elektromagnetik. Hukum Gas ideal mengatakan bahwa gas yang dimampatkan akan menghasilkan tekanan yang melawan pemampatan itu. Bila gas tersebut memancarkan radiasi elektromagnetik, maka Matahari juga menghasilkan tekanan radiasi yang arahnya ke luar permukaan matahari.


Lapisan yang lebih dalam mengalami tekanan gravitasi yang lebih besar, oleh karena itu untuk mengimbanginya tekanan radiasi juga harus sama besarnya.

Bila suhu di pusat matahari kita ketahui dengan pemodelan teoritik, maka suhu di permukaan matahari kita ketahui melalui pengamatan. Apabila kita melewatkan sinar matahari pada prisma, maka kita akan melihat bahwa sinar matahari yang berwarna putih tersebut akan terbagi-bagi menjadi sinar dengan berbagai warna, dari warna merah hingga warna ungu. Warna-warna yang berbeda ini adalah tanda bahwa cahaya terbagi-bagi atas sinar dengan energi yang berbeda-beda. Artinya radiasi elektromagnetik merentang dari energi tinggi hingga energi rendah (sinar Gamma dan sinar-X adalah contoh radiasi energi tinggi, sementara sinar inframerah, gelombang Radio, dan gelombang mikro (microwave) adalah contoh radiasi energi rendah), dan radiasi yang kasat mata kita namakan sebagai cahaya.

Sumber radiasi elektromagnetik adalah sebuah pemancar sempurna yang kita namakan benda hitam. Lagi-lagi benda hitam, sebagaimana gas ideal, hanyalah objek khayal. Namun sifat-sifat radiatif matahari dapat didekati bila kita menganggap matahari sebagai sebuah benda hitam.


Benda hitam yang memancarkan energinya pada suhu tertentu akan memiliki kurva distribusi energi yang spesifik pada temperatur tersebut. Sumber: Wikipedia

Eksperimen menunjukkan bahwa sebuah benda hitam memancarkan energinya dalam bentuk radiasi elektromagnetik dan energinya dipancarkan pada seluruh panjang gelombang. Namun intensitas energi pada setiap panjang gelombang tidak sama, dan setiap benda hitam yang memiliki temperatur tertentu memiliki panjang gelombang di mana intensitas energinya paling tinggi. Semakin tinggi temperatur sebuah benda hitam, semakin pendek panjang gelombang di mana energi paling tinggi memancar (lihat gambar kurva benda hitam). Dengan demikian, benda hitam yang memancarkan energinya pada suhu tertentu akan memiliki kurva intensitas energi yang unik. Untuk mengetahui bentuk kurva ini, kita dapat memecah cahaya pancaran benda hitam ini ke dalam spektrumnya masing-masing. Permukaan Matahari dapat kita anggap sebagai sebuah benda hitam, dan oleh karena itu bentuk sebaran energi matahari dapat didekati dengan kurva pancaran benda hitam. Dengan melakukan pengamatan spektroskopi pada matahari, kita dapat mengetahui seperti apa spektrum matahari dan dengan demikian dapat diketahui pula temperatur permukaannya yaitu 5800 Kelvin.

Pengamatan spektrum bintang-bintang lain ternyata menunjukkan perilaku yang sama: bintang juga merupakan sebuah benda hitam dan memancarkan radiasi elektromagnetik. Namun, temperatur permukaan bintang berbeda-beda. Ada yang lebih panas dari matahari, ada pula yang lebih dingin dari matahari. Walaupun demikian, semua bintang yang kita amati berlaku seperti sebuah benda hitam. Dari pengamatan spektrum matahari dan bintang-bintang lain inilah kita dapat menyimpulkan bahwa bintang-bintang yang kita amati di langit malam itu sebenarnya adalah matahari-matahari lain yang letaknya teramat sangat jauh sehingga sinarnya demikian redup bila dibandingkan dengan matahari yang lebih dekat. Karena sekarang kita sudah tahu bahwa bintang adalah objek yang sama dengan matahari kita, maka bintang-bintang lain pun dapat kita anggap pula sebagai sebuah bola gas yang berada dalam kesetimbangan hidrostatik. Apa yang kita ketahui tentang kesetimbangan matahari dapat kita terapkan pula pada bintang!

Sumber : Langitselatan.com

Sejarah Struktur Bintang dan Pengukurannya

Pengetahuan mengenai struktur bintang menempuh perjalanan yang panjang. Untuk mengetahuinya para astronom hanya mengandalkan penampakan bintang dari luar saja. Tulisan ini mencoba mengetengahkan bagaimana perjalanan itu berlangsung.

Apakah bintang itu?


Sebelum menyelam lebih dalam untuk mengetahui struktur bintang, orang harus dapat mendefinisikan terlebih dahulu apakah bintang itu sebenarnya berdasarkan penampakannya dari luar.

Sejak jaman dulu, orang mencoba menerka-nerka apa sebenarnya bintang itu, si bintik-bintik cahaya kecil di langit. Bahwa bintang sebenarnya adalah matahari-matahari lain yang letaknya sangat jauh, sudah dipostulatkan oleh filsuf-filsuf Yunani Kuno, Demokritus dan Epikurus, dan dipertegas pada 1584 oleh Giordano Bruno, seorang filsuf Italia, hingga akhirnya mencapai konsensus di kalangan astronom seabad kemudian.

Satu-satunya penghubung antara Matahari/bintang dan pengamat hanyalah cahayanya. Untuk dapat menjawab apakah sebenarnya bintang itu, cahaya inilah yang ’diubek-ubek’, dikumpulkan, disebarkan lagi, dipilah-pilah, ’diputar-putar’, dan sebagainya. Joseph von Fraunhofer pada 1814, melewatkan cahaya Matahari pada sebuah prisma. Dia mencatat dan memetakan sejumlah garis-garis gelap dalam spektrum Matahari, yang kemudian disebut sebagai garis-garis Fraunhofer. Gustav Robert Kirchhoff dan Robert Bunsen kemudian menemukan bahwa garis-garis tersebut berasal dari gas bertekanan rendah dan berhubungan dengan suatu elemen kimia yang berada di lapisan atas matahari. Fraunhofer juga kemudian menemukan bahwa bintang-bintang lain juga memiliki spektrum seperti Matahari, tetapi dengan pola garis-garis gelap yang berbeda. Jadi dari sini kemudian astronom berkesimpulan bahwa bintang sebenarnya adalah sebuah bola gas.


Penelitian spektrum bintang dapat mengungkap elemen apa saja yang ada di bintang, namun seberapa besar kelimpahan elemen ini baru bisa ditentukan pada 1925 setelah Cecilia Payne-Gaposchkin, dengan menggunakan teori ionisasi dari Meghnad Saha, berhasil mengungkapkan bahwa hidrogen adalah elemen kimia paling berlimpah. Jadi bintang adalah sebuah bola gas yang berpijar dengan hidrogen sebagai elemen paling berlimpah.

Pembangkitan energi di dalam bintang

OK, deal, bintang adalah bola gas yang berpijar dengan hidrogen adalah unsur paling berlimpah. Untuk mengetahui strukturnya, astronom melakukan pendekatan baik dari luar maupun dari dalam. Pendekatan dari luar dilakukan sesederhana pengamatan dari luar. Pendekatan dari dalam memunculkan satu pertanyaan penting: apa yang terjadi di pusat bintang? Bintang bisa bersinar haruslah ada energi yang dibangkitkan di bagian dalamnya.


Di pertengahan abad ke-19, Lord Kelvin dan Hermann von Helmholtz, dengan menggunakan teori konservasi energi mempostulatkan bahwa energi yang dihasilkan Matahari berasal dari pengerutan gravitasi. Proses pengerutan mengubah energi gravitasi menjadi energi panas dan meningkatkan suhu di inti Matahari. Dengan harga massa dan radius Matahari sekarang, dan kemudian membaginya dengan jumlah energi yang dipancarkannya, akan didapatkan usia Matahari berdasarkan mekanisme Kelvin-Helmholtz pada kisaran 18 juta tahun saja. Tentu saja hal ini bertentangan dengan bukti-bukti geologi dan biologi yang mendukung bahwa kehidupan sudah berlangsung selama miliaran tahun dan seharusnya Matahari sudah ada sejak saat itu. Walau begitu mekanisme Kelvin-Helmholtz penting pada masa-masa awal pembentukan Matahari.

Perkembangan fisika kuantum, menelurkan teori baru akan pembangkitan energi di dalam bintang. Adalah Sir Arthur Eddington pada 1920 yang mengemukakannya untuk pertama kali, melibatkan dua proton yang bergabung untuk membentuk satu inti helium dikuti dengan pelepasan energi. Pada 1939, Hans Bethe mengemukakan mekanisme daur proton-proton untuk pembangkitan energi di dalam bintang sekelas matahari, melengkapi teori mekanisme daur karbon-nitrogen-oksigen yang dikemukakan sebelumnya pada 1938 oleh Carl Friedrich von Weizsäcker.

Ketika Eddington mengungkapkan usulannya untuk pertama kali, didapati bahwa tekanan dan temperatur Matahari tidak cukup tinggi untuk melangsungkan pembakaran fusi hidrogen. Bethe melihat bahwa efek terowong dalam fisika kuantum dapat mengatasi masalah ini, sehingga reaksi fusi dapat terjadi dalam lingkungan dengan temperatur dan tekanan yang tidak terlalu tinggi. Daur proton-proton yang diusulkan oleh Hans Bethe adalah reaksi fusi yang tidak terlalu peka terhadap suhu dan berlangsung dengan lambat. Daur ini juga yang membuat bintang-bintang sekelas matahari dan yang lebih kecil dapat berumur jauh lebih panjang.

Di lain pihak, daur karbon-nitrogen-oksigen berlangsung pada temperatur dan tekanan yang tinggi yaitu saat energi kinetik mampu mengatasi penghalang gaya Coulomb. Daur karbon-nitrogen-oksigen berlangsung dengan laju cepat, sehingga sekali bintang memiliki cukup tekanan dan temperatur, daur ini akan lebih dominan ketimbang rantai proton-proton. Dengan daur CNO, terjadi semacam siklus melingkar, semakin tinggi temperatur, semakin cepat reaksi berlangsung, dan semakin cepat reaksi berlangsung, semakin tinggi temperatur. Daur ini yang dominan terjadi pada bintang-bintang yang lebih masif daripada matahari.


Perbedaan mekanisme fusi nuklir di dalam bintang ini akan membuat perbedaan struktur bintang antara yang bermassa lebih kecil dari matahari dan yang lebih besar.

Penghantaran energi

Mengetahui cara energi diangkut keluar dari pusat bintang adalah penting ketika kita ingin mengetahui struktur bintang. Kita mengenal berbagai cara perpindahan energi: konduksi, konveksi, dan radiasi. Di dalam bintang, energi utamanya diangkut dengan dua cara, yaitu konveksi dan radiasi. Perbedaan mekanisme pembangkitan energi yang telah diuraikan di atas membuat struktur bintang sekelas matahari dan yang lebih kecil berbeda dengan struktur bintang yang lebih masif.

Struktur bintang sekelas matahari atau yang lebih kecil

Konveksi terjadi ketika terdapat perbedaan temperatur yang cukup besar antara dua lapisan fluida. Gas dan plasma, dua wujud zat di dalam bintang, berlaku sebagai fluida. Dalam konveksi, energi dibawa oleh materi yang bergerak dari lapisan yang bertemperatur tinggi ke rendah. Seperti yang telah dibicarakan di atas, pembangkitan energi pada bintang-bintang sekelas matahari atau yang lebih kecil, terutama ditempuh melalui mekanisme rantai proton-proton yang tidak terlalu peka terhadap suhu. Hal ini menyebabkan temperatur pada lapisan-lapisan di bagian inti tidak terlalu jauh berbeda sehingga konveksi tidak terjadi. Energi di bagian inti diangkut keluar dengan cara radiasi.

Sebaliknya di bagian luar bintang, temperatur cukup rendah sehingga mengijinkan atom hidrogen berada dalam keadaan netral. Pada satu titik di dalam bintang antara inti dan permukaan, foton-foton berenergi tinggi dalam panjang gelombang ultra violet yang diradiasikan dari inti kemudian diserap oleh hidrogen-hidrogen netral untuk mengionisasi diri, sehingga seolah-olah lapisan ini menjadi tidak tembus cahaya ultra violet. Dari titik ini penghantaran dengan cara radiasi berhenti dan energi kemudian diangkut secara konveksi.


Jadi untuk bintang-bintang sekelas matahari atau yang lebih kecil, lapisan radiasi dominan di bagian inti sementara lapisan konveksi dominan di bagian luar.

Struktur bintang yang lebih masif dari matahari


Zona konveksi dan radiasi dari bintang-bintang dengan massa berbeda. Sumber: Wikipedia
Pada bintang-bintang bermassa lebih besar daripada matahari, reaksi CNO yang sangat peka pada temperatur membuat gradien temperatur di inti sangat besar. Semakin dalam kita masuk ke lapisan-lapisan di bagian inti maka semakin tinggi temperatur, sehingga semakin cepat reaksi berlangsung. Semakin cepat reaksi berlangsung, berakibat pada semakin tingginya temperatur, begitu seterusnya, sehingga perbedaan temperatur antar lapisan di bagian inti menjadi begitu besar yang membuat pengangkutan energi di pusat diangkut dengan cara konveksi.

Energi yang begitu besar yang dibangkitkan dari reaksi CNO membuat bagian luar bintang juga memiliki temperatur yang tinggi sehingga hampir semua atom hidrogen berada dalam keadaan terionisasi. Hal ini menyebabkan foton-foton ultra violet tidak menemui ’halangan’ dan lolos begitu saja, sehingga penghantaran energi dengan cara radiasi lebih dominan di bagian kulit bintang.

Jadi untuk bintang-bintang yang lebih masif daripada matahari, lapisan radiasi dominan di bagian kulit/luar sementara lapisan konveksi dominan di bagian inti.

Sumber : Langitselatan.com

Aurora Terlihat Dari Luar Angkasa

Para awak NASA (Badan Aeronautika dan Luar Angkasa AS) yang berada di Stasiun Angkasa Luar Internasional (ISS) kembali mengirimkan gambargambar keindahan fenomena alam yang terpotret oleh kamera canggih mereka. ISS memamerkan foto tentang aurora (fenomena pancaran cahaya yang menyala pada lapisan ionosfer). Yang tertangkap kamera ISS adalah aurora australis atau fenomena pancaran cahaya di selatan belahan bumi atau di dekat Kutub Selatan. The Daily Mail kemarin melaporkan foto aurora australis itu diabadikan pada 11 September lalu.

Fenomena itu tertangkap saat ISS melintas di langit timur Australia. Jika muncul di sebelah utara, namanya aurora borealis. Biasanya, aurora muncul di dekat kutub utara atau kutup selatan. Namun, aurora juga bisa muncul di dekat ekuator jika terjadi fenomena luar biasa yang menghasilkan medan magnet berkekuatan tinggi. Menurut pakar, aurora terjadi saat medan magnet bumi, yang biasanya berpusat di kutub utara dan kutub selatan, berinteraksi dengan solar wind alias partikel bermuatan yang dipancarkan matahari.

Dalam interaksi itu, atomatom solar wind bertabrakan dengan partikel atom oksigen dan nitrogen, dua senyawa utama yang mudah didapati di udara bebas. Proses yang terjadi di ionosfer lantas menghasilkan pancaran cahaya warna-warni yang bisa ditangkap dengan mata telanjang.

’’Ketika gambar itu diambil, sedang terjadi badai geomagnetis di bumi,’’ tutur ISS. Para ahli menyebut cahaya warnawarni akibat tabrakan partikel-partikel atom itu sebagai foton. Ketika menabrak partikel atom oksigen, solar wind memancarkan warna hijau. Gelombang foton hijau sepanjang 0,558 mikrometer. Karena cahaya matahari yang jatuh ke tanaman dipantulkan dengan panjang gelombang foton yang sama, manusia melihat tanaman berwarna hijau.

Download videonya disini : YouTube | IDWS | MediaFire

Ketika Bintang Kehilangan Energi


Studi astronomi terbaru berhasil menemukan empat bintang katai putih yang sedang "memakan" planet serupa Bumi.

Penemuan ini dapat memberi cerminan tentang apa yang akan terjadi pada Tata Surya ketika Matahari mati dalam waktu 5 miliar tahun lagi.

Seiring energi Matahari habis, Matahari mengembang menjadi bintang raksasa merah. Ketika hal ini terjadi, planet seperti Merkurius, Venus dan mungkin Bumi akan "tertelan".

Pada akhirnya, bagian luar dari atmosfer bintang akan melembung membentuk nebula, meninggalkan inti padat, sebuah bintang katai putih.

Nasib planet yang tak tertelan Matahari tak kalah sial. Planet-planet lain akan mengalami ketidakstabilan orbit hingga bisa bertabrakan satu sama lain.

Bisa terjadi, suatu planet pada akhirnya akan mendekati bintang katai putih dan termakan.

Pembuktian

Adanya bintang katai putih yang memakan "Bumi" ditemukan dengan analisis atmosfer bintang tersebut. Boris Gansicke adalah, astrofisikawan dari University of Warwick di Inggris adalah penemunya.

Normalnya, atmosfer bintang katai putih terdiri atas hidrogen, helium dan elemen lain yang relatif ringan. Sebabnya, gravitasi bintang katai putih menarik unsur yang lebih berat ke intinya.

Berdasakan hal tersebut, zat kimia lain yang ada di atmosfer bintang katai putih pasti berasal dari debris yang jatuh ke bintang itu.

Untuk melihat tanda-tanda bahwa bintang katai putih mengkonsumsi planet, Gansicke mengobservasi 80 bintang katai putih dalam sinar ultraviolet dengan Teleskop Hubble.

Astronom menemukan adanya empat bintang yang atmosfernya memiliki oksigen, magnesium, besi, silikon dan sedikit karbon. Elemen tersebut adalah elemen yang diharapkan ditemukan di bintang yang memakan planet.

"Kemelimpahan yang kami temukan hampir sama dengan yang ada di Bumi. Jika Anda menjadikan Bumi debu dan menaruhnya di bintang katai putih, maka komposisi kimianya akan cocok dengan penemuan," kata Gansicke.

Sebuah bintang, bernama PG0843+516, bahkan memiliki kandungan besi lebih banyak dari katai putih lain, juga memiliki kemelimpahan belerang dan nikel. Hal ini menunjukkan bahwa bintang itu tengah melahap inti planet.

"Jika Anda penasaran dengan rupa inti Bumi, itu seperti besi murni dan nikel. Apa yang kami bayangkan adalah melihat sebuah benda yang pada sebelumnya cukup besar untuk memiliki inti besi," ungkap Gansicke seperti dikutip National Geographic, Senin (7/5/2012).

Menurut Gansicke, debu di sekeliling bintang katai putih bisa habis dalam beberapa ribu atau puluh ribu tahun. Namun, adanya potongan planet lain yang jatuh bisa menambah "makanan" yang harus dihabiskan.

Astronom belum bisa memperkirakan berapa fragmen, atau mungkin juga planet, yang tersisa dari proses ini. Belum bisa diperkirakan juga nasib planet-planet yang tak termakan.


Sumber : Kompas.com

SuperMoon Minggu Nanti Terbaik Bagi Indonesia

Fenomena Supermoon akan terjadi lagi pada Minggu (6/5/2012). Sebelumnya, Supermoon terjadi pada 19 Maret 2011.

Mutoha Arkanuddin dari Jogja Astro Club (JAC) mengatakan, "Kalau Supermoon tahun lalu terbaik di Amerika, maka Supermoon tahun ini adalah Supermoon terbaik bagi Indonesia."

Pada saat Supermoon terjadi nanti, Bulan akan berada pada jarak sekitar 357.000 kilometer, 10 persen lebih dekat dari jarak biasanya. Jarak yang lebih dekat membuat Bulan akan tampak 14 persen lebih besar dan 30 persen lebih terang dari biasanya.

Menurut Mutoha, Supermoon tahun ini bisa dinilai yang terbaik dari selisih antara saat terjadinya purnama, perigee, dan saat Supermoon tampak. "Tahun ini purnama terjadi pada pukul 10.30, sementara perigee-nya pada 3.30 UT atau 10.30 WIB. Jadi bersamaan," ungkap Mutoha, Rabu (2/5/2012).

Selisih antara saat terjadinya purnama dan perigee dengan waktu yang memungkinkan untuk pengamatan di Indonesia juga lebih singkat. "Di Indonesia, kita hanya perlu menunggu sekitar 6 jam untuk melihat Supermoon. Kalau di Amerika tahun ini harus menunggu 12 jam," papar Mutoha.

Meski istimewa, penampakan Supermoon tak akan bisa disadari dengan mudah. Diperlukan teleskop untuk membandingkan besarnya bulan saat Supermoon dengan saat purnama biasa. Mutoha dan anggota komunitas JAC berencana membuat dokumentasi agar publik menyadari perbedaan besar Bulan tersebut.

Sementara itu, Mutoha menegaskan bahwa tak ada kaitan antara Supermoon dengan bencana dan gempa bumi. Meski demikian, dampak Supermoon pada air pasang perlu diwaspadai.


Sumber : Kompas.com

SuperMoon Akan Terjadi Lagi

Fenomena Supermoon akan datang lagi tahun ini, tepatnya pada Minggu (6/5/2012). Supermoon terjadi ketika purnama terjadi pada saat yang sama dengan perigee Bulan, kala Bulan berada pada titik terdekat dengan Bumi.

Mutoha Arkanuddin dari Jogja Astro Club (JAC) Rabu (2/5/2012), mengatakan, "Dari Indonesia, menurut saya, Supermoon tahun ini lebih bagus dari tahun kemarin." Supermoon tahun lalu terjadi pada 19 Maret 2011.

Saat Supermoon terjadi nanti, Bulan hanya akan berjarak 356.955 kilometer dari Bumi. Jarak Bulan kali ini 10 persen lebih dekat dari jarak Bulan biasanya. Karena jaraknya lebih dekat, Bulan akan tampak lebih besar. Pada Supermoon tahun ini, Bulan akan tampak 14 persen lebih besar dan 30 persen lebih terang.

Menurut Mutoha, Supermoon kali ini tak berbeda jauh dengan Supermoon tahun lalu. Selisih perigee tahun ini dan tahun lalu tak begitu jauh.

Mutoha mengatakan bahwa saat momen Supermoon terjadi nanti, Purnama dan perigee akan terjadi bersamaan pada Minggu pukul 10.30 WIB. "Karenanya purnama saat perigee ini baru bisa disaksikan malam harinya," kata Mutoha.

Supermoon kali ini bisa disaksikan pada Minggu, sesaat setelah Matahari tenggelam hingga sesaat sebelum fajar menyingsing esok harinya. Tentu saja, kondisi langit cerah tanpa awan dan hujan adalah syarat mutlak menyaksikan fenomena ini.

"Untuk membedakan purnama saat Supermoon dan waktu biasanya memang agak sulit, harus dilakukan dengan teleskop," jelas Mutoha.

Mutoha menjelaskan bahwa tim JAC akan membuat dokumentasi pengamatan Supermoon kali ini dan membandingkan dengan kondisi purnama biasanya sehingga publik bisa menyadari perbedaannya.

Supermoon kadang dihubungkan dengan bencana seperti gempa bumi, namun hingga saat ini tidak ada bukti yang menunjukkan kaitan Supermoon dan bencana.

Namun demikian, Mutoha mengatakan bahwa dampak Supermoon pada pasang air laut perlu diwaspadai. "Daerah-daerah yang rendah seperti Semarang perlu waspada. Karena jarak Bulan lebih dekat, maka pengaruh gravitasinya juga lebih besar."

Minggu malam nanti, jangan lupa menyaksikan kedatangan Supermoon. Jangan lupa mengabadikan foto terindah Supermoon


Sumber : Kompas.com